Maximally Symmetric p-groups

Luke Morgan

The Centre for the Mathematics of Symmetry and Computation

~

The University of Western Australia

ANZMC8 - 11th December 2014
Joint work with:

Alice C. Niemeyer, Stephen P. Glasby, John Bamberg.
Notation: \(p \) always a prime and \(p > 3 \).

\(G \) always a finite \(p \)-group.

\(\Phi(G) = \text{Frattini subgroup of } G \), i.e. the smallest normal subgroup with elementary abelian quotient.
Notation: \(p \) always a prime and \(p > 3 \).

\(G \) always a finite \(p \)-group.

\(\Phi(G) \) = **Frattini subgroup** of \(G \), i.e. the smallest normal subgroup with elementary abelian quotient.

Burnside's Basis Theorem: \(G \) is \(d \)-generated if and only if \(G/\Phi(G) \) is.

\[
G/\Phi(G) \cong F_p^d
\]
Notation: \(p \) always a prime and \(p > 3 \).

\(G \) always a finite \(p \)-group.

\(\Phi(G) = \text{Frattini subgroup of } G \), i.e. the smallest normal subgroup with elementary abelian quotient

Burnside's Basis Theorem: \(G \) is \(d \)-generated \(\iff \) \(G/\Phi(G) \) is.

\[
G/\Phi(G) \cong \mathbb{F}_p^d
\]

Question: What linear group does \(\text{Aut}(G) \) induce on \(G/\Phi(G) \)?
More questions:

Given $H \leq \text{GL}(d, p)$, is there a p-group G such that $\text{Aut}(G)$ induces H on $G/\mathfrak{z}(G)$?
More questions:

1. Given $H \leq \text{GL}(d, p)$, is there a p-group G such that $\text{Aut}(G)$ induces H on $G/\Phi(G)$?

2. What is the minimal exponent of such G?
More questions:

- Given \(H \leq \text{GL}(d, p) \), is there a \(p \)-group \(G \) such that \(\text{Aut}(G) \) induces \(H \) on \(G/\Phi(G) \)?

- What is the minimal \(p \)-exponent, \(p \)-order, or nilpotency class of such \(G \)?

Definition: Let \(\varphi : \text{Aut}(G) \rightarrow \text{Aut}(G/\Phi(G)) \cong \text{GL}(d, p) \).

Definition: For \(H \leq \text{GL}(d, p) \), call a finite \(p \)-group \(G \) a \(\Phi \)-symmetric \(p \)-group if:

\[
\varphi(\text{Aut}(G)) = H.
\]
Some answers: Let $H \leq GL(d,p)$.
Some answers: Let $H \leq GL(d, p)$.

Theorem (Heineken, Liebeck):
There exists a p-group G of exponent p^2 and nilpotency class two such that H is the group induced on $G/2(G)$. $\cong |H|$-generated.
Some answers: Let $H \leq \text{GL}(d,p)$.

Theorem (Heineken, Liebeck): There exists a p-group G of exponent p^2 and nilpotency class two such that H is the group induced on $G/Z(G)$. $\cong [H]$-generated

Theorem (Bryant, Kovács): There exists a H-symmetric p-group.

No bound on nilpotency class or exponent.
Theorem (Helleloid, Martin): Let \(n \geq 2 \).

\[
\lim_{n \to \infty} \left(\frac{\text{proportion of } d\text{-generated } p\text{-groups of } p\text{-length } \leq n}{\text{with automorphism group a } p\text{-group}} \right) = 1.
\]
Problem: Given H maximal in $GL(d,p)$, find a H-symmetric p-group of class ≤ 3 (ish?), of exponent p, of small (ish?) order.
Where to look?
Where to look?

For a group X, the lower exponent-p central series is:

$$
\lambda_0(X) = X, \quad \lambda_{i+1}(X) = \left[\lambda_i(X), X\right] (\lambda_i(X))^p.
$$
Where to look?

For a group X, the lower exponent-p central series is:

\[\lambda_0(X) = X, \quad \lambda_{i+1}(X) = [\lambda_i(X), X] \left(\lambda_i(X) \right)^p. \]

- $\lambda_1(X) = [X, X]^p = \Phi(X)$ for X a p-group.
- $\overline{\lambda}_i(X) := \lambda_i(X) / \lambda_{i+1}(X)$ is an el. ab. p-group.
Where to look?

For a group X, the lower exponent-p central series is: $\lambda_0(X) = X$, $\lambda_{i+1}(X) = [\lambda_i(X), X] (\lambda_i(X))^p$.

- $\lambda_1(X) = [X, X]^p = \Phi(X)$ for X a p-group.
- $\overline{\lambda}_i(X) := \lambda_i(X)/\lambda_{i+1}(X)$ is an el. ab. p-group.

Eg. $X = D_8$. $\lambda_1(X) = Z(X)$, $\overline{\lambda}_0(X) \cong C_2^2$,
$\lambda_2(X) = 1$, $\overline{\lambda}_1(X) \cong C_2$.
Let $c, d \in \mathbb{N}$.

Definition: The exponent p class c d-generator p-covering group is:

$$\Gamma_{c,d} := \frac{F_d}{(F_d)^p} \cdot c(F_d).$$

($F_d =$ free group on d generators.)
Let \(c, d \in \mathbb{N} \).

Definition: The **exponent \(p \) class \(c \) \(d \)-generator \(p \)-covering group** is:

\[
\Gamma_{c,d} := \frac{F_d}{(F_d)^p \lambda_c(F_d)}.
\]

(\(F_d = \) free group on \(d \) generators.)

\(\Gamma_{c,d} \) is a **finite \(d \)-generated \(p \)-group** of class \(c \) and **exponent** \(p \).
Theorem (O'Brien): If G is a d-generated p-group of class c and exponent p then

$\Gamma_{c,d} \rightarrow G$.

Theorem (O’Brien): If G is a d-generated p-group of class c and exponent p, then
\[\Gamma_{c,d} \rightarrow G. \]

Observation: $\Gamma_{c,d}$ is a $GL(d,p)$-symmetric p-group.
Theorem (O’Brien): If G is a d-generated p-group of class c and exponent p then

$$\Gamma_{c,d} \rightarrow G.$$

Observation: $\Gamma_{c,d}$ is a $GL(d,p)$-symmetric p-group.

$$\Gamma = \Gamma_{c,d} \quad \cdots \quad \exists$$

$$\lambda_1(\Gamma) \quad \cdots$$

$$\lambda_2(\Gamma) \quad \cdots$$

$$\lambda_c(\Gamma) \quad \cdots$$

$$\lambda_0(\Gamma) = \text{Im}_P^d \quad \leftarrow \quad GL(d,p)$$

$$\lambda_1(\Gamma)$$

$$\lambda_2(\Gamma)$$

$$\lambda_c(\Gamma)$$
Theorem (O’Brien): If G is a d-generated p-group of class c and exponent p then

$$\Gamma_{c,d} \rightarrow G.$$

Observation: $\Gamma_{c,d}$ is a $\text{GL}(d, p)$-symmetric p-group.
Theorem (O'Brien): Let $\lambda_c(\Gamma) < \Pi < \lambda_{c-1}(\Gamma_{c,d})$,

$$N = N_{\text{GL}_d(d,p)}(\Pi)$$ and set $G = \Gamma / \Pi$. Then $\Phi(\text{Aut}(G)) = N$, G is of exponent p, d-generated and class c.
Theorem (O'Brien): Let $\lambda_c(\Gamma) < \Pi < \lambda_{c-1}(\Gamma_{c,d})$,

$N = N_{\mathbb{C}L(d,p)}(\Pi)$ and set $G = \Gamma/\Pi$. Then $\emptyset(\text{Aut}(G)) = N$, G is of exponent p, d-generated and class c.

i.e. G is a N-symmetric p-group.
Problem: Given H maximal in $\text{GL}(d,p)$, find a H-symmetric p-group of class c and of exponent p.
Problem: Given H maximal in $GL(d, p)$, find a H-symmetric p-group of class c and of exponent p.

Idea: Find $\lambda_c(\Pi_{c,d}) < \Pi < \lambda_{c-1}(\Pi_{c,d})$ which is H-invariant but not $GL(d, p)$-invariant.
Decomposition of $\overline{\lambda}_i(\Gamma)$ as a $GL(d, \rho)$-module:

\[
\begin{align*}
\overline{\lambda}_0(\Gamma) &= V \\
\overline{\lambda}_1(\Gamma) &= V^{(1,1)} = \Lambda^2 V \\
\overline{\lambda}_2(\Gamma) &= V^{(2,1,0)} = \Lambda^2 V \otimes V / \Lambda^3 V \\
\overline{\lambda}_3(\Gamma) &= V^{(3,1,0,0)} \oplus V^{(2,1,1,0)} \\
\overline{\lambda}_4(\Gamma) &= \ldots
\end{align*}
\]
Structure /Action of H:

Theorem (Aschbacher): Let H be a maximal subgroup of $\text{GL}(d,p)$ with $\text{SL}(d,p) \not\leq H$. Then H belongs to one of 8 "geometric families" or $H/\text{Z}(H)$ is an almost simple group and H acts abs. irred.
Structure / Action of H:

Theorem (Aschbacher): Let H be a maximal subgroup of $GL(d, p)$ with $SL(d, p) \not\subset H$. Then H belongs to one of 8 "geometric families" or $H/2(H)$ is an almost simple group and H acts abs. irred.

Families: Put $V = \mathbb{F}_p^d$.

- C_1: Subspace stabilizers,
- C_2: $V = V_1 \oplus \cdots \oplus V_r$,
- C_3: Extension field subgroups,
- C_4: $V = V_1 \otimes V_2$,
- C_5: Subfield subgroups,
- C_6: Extraspecial normalizers,
- C_7: $V = V_1 \otimes \cdots \otimes V_r$,
- C_8: Classical groups.
Action of H on $\Sigma_i(\Pi)$?

E.g. $H \in C$, so H preserves a subspace U of V.
Action of H on $\Sigma_1(\mathbb{P})$?

e.g. $H \in C\!\!\!\!L$, so H preserves a subspace U of V.

Consider $S := \langle uv \mid u \in U, v \in V \rangle \subset \Pi^2V$.

Clearly S is H-invariant.
Action of H on $\lambda_i(\Pi)$?

E.g. $H \in C$, so H preserves a subspace U of V.

Consider

$$S := \langle uv \mid u \in U, v \in V \rangle \subset \Lambda^2 V.$$

Clearly S is H-invariant.

If $\dim U < d - 1$, then $S \neq \Lambda^2 V$, so $\exists \Pi \subset \lambda_i(\Gamma_{2,d})$ with

$$N_{\text{GL}(d,p)}(\Pi) = H$$

and $G := \Gamma_{2,d} / \Pi$ is a H-symmetric p-group of class 2 and exponent p.
e.g. $H \in C_8$, with $H = \text{Sp}(d, p)$ preserving \mathcal{B}, an alternating form.
e.g. $H \in C_8$, with $H=Sp(d,p)$ preserving β, an alternating form.

Define $\mu : \Lambda^2 V \to \mathbb{F}_p$ by

$$\mu(u \wedge v) = \beta(u,v).$$

μ is surjective, commutes with action of H and $\text{codim } \ker \mu = 1$.
e.g. $H \in G_8$, with $H = \text{Sp}(d, p)$ preserving β, an alternating form.

Define $\mu: \Lambda^2 V \to F_p$ by

$$\mu(uv) = \beta(u, v).$$

μ is surjective, commutes with action of H and $\text{codim Ker } \mu = 1$.

Put $T = \text{Ker } \mu$.

Then $G := \Gamma_{2, d}/T$ is a H-symmetric p-group of exponent p,

class 2 and order p^{d+1}.
e.g. \(H \in C_8 \), with \(H = \text{Sp}(d, p) \) preserving \(\beta \), an alternating form.

Define \(\mu : \mathbb{F}_p^2 V \to \mathbb{F}_p \) by

\[
\mu(\nu \mu) = \beta(\nu, \mu).
\]

\(\mu \) is surjective, commutes with action of \(H \) and \(\text{codim ker } \mu = 1 \).

Put \(T = \ker \mu \).

Then \(G := \Gamma_{2, d}/T \) is a \(H \)-symmetric \(p \)-group of exponent \(p \),

class 2 and order \(p^{d+1} \).

\((G \cong p^{d+1}.)\)
e.g. $H \in C_8$ with $H = \text{GO}(d, p)$ preserving β a symm. bilinear form. H acts irreducibly on $\Lambda^2 V$...
e.g. $H \in G_8$ with $H = G\, O(d, p)$ preserving β a symm. bilinear form.

H acts irreducibly on $\Lambda^2 V$...

Action of H on $\Lambda^2 V \otimes V / \Lambda^3 V$?

Define $\mu: V \otimes V \otimes V \rightarrow V$ by

$$\mu(u \otimes v \otimes w) = \beta(u, v) w.$$
e.g. $H \in \text{G}_8$ with $H = \text{GO}(d, p)$ preserving β a symm. bilinear form.

H acts irreducibly on $\Lambda^2 V$...

Action of H on $\Lambda^2 V \otimes V / \Lambda^3 V$?

Define $\mu : V \otimes V \otimes V \to V$ by

$$\mu(u \otimes v \otimes w) = \beta(u, v) w.$$

μ is a H-module homomorphism.
e.g. $\mathbf{H} \in C_7$ with $V = U \otimes W$ and $H \cong \text{GL}(r, \mathbb{P}) \cap S_2$ ($r^2 = d$).

Again H is irreducible on $\Lambda^2 V$. On $V^{(2,0)} = \Lambda^2 V \otimes V / \Lambda^3 V$?
e.g. HeC_7 with $V = U \otimes W$ and $H \cong \text{GL}(r, p) \cong S_2$ ($r^2 = d$).

Again H is irreducible on $\Lambda^2 V$. On $V^{(2,1,0)} = \Lambda^2 V \otimes V / \Lambda^3 V$?

Define $\mu : \Lambda^2 V \otimes V \rightarrow U^{(2,1,0)} \otimes S^3 W \oplus S^3 U \otimes W^{(2,1,0)}$

by $\mu : (a \otimes d \otimes b \otimes e) \otimes \text{cof} \mapsto \overline{ab \otimes c \otimes d \otimes e \otimes f} + a \otimes b \otimes c \otimes d \otimes e \otimes f$
e.g. $\mathsf{H} \subset \mathcal{C}_7$ with $V = U \otimes W$ and $\mathsf{H} \simeq \mathsf{GL}(r, p) \lesssim S_2$ ($r^2 = d$).

Again H is irreducible on $\Lambda^2 V$. On $V^{(2,1,0)} = \Lambda^2 V \otimes V / \Lambda^3 V$?

Define $\mu : \Lambda^2 V \otimes V \rightarrow U^{(2,1,0)} \otimes S^3 W \oplus S^3 U \otimes W^{(2,1,0)}$

by $\mu : (a \otimes d \otimes b \otimes e) \otimes c \otimes f \rightarrow \alpha \beta \otimes c \otimes d \otimes e \otimes f + a \beta \otimes b \otimes c \otimes d \otimes e \otimes f$

where $\simeq : \Lambda^2 U \otimes U \rightarrow U^{(2,1,0)},$

$\sim : \Lambda^2 W \otimes W \rightarrow W^{(2,1,0)}.$

$\Lambda^3 V \leq \text{Ker } \mu.$
Theorem (Bamberg, Glasby, M., Niemeyer):

Let \(p > 3 \) be prime and let \(d \in \mathbb{N} \).

Let \(H \) be a maximal subgroup of \(GL(d, p) \) with \(SL(d, p) \notin H \).

Suppose \(H \leq C_i \) with \(i \in \{1, 2, 3, 4, 7, 8\} \) or \((H/2(H))' = Alt(m) \).

Then there exists a \(H \)-symmetric \(p \)-group of exponent \(p \) and class \(c \), with \(c \) below.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(V)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{U'}{U})</td>
<td>2 if (d \neq 2), 3 if (d = 2).</td>
</tr>
<tr>
<td>2</td>
<td>(V \oplus \cdots \oplus V_r)</td>
<td>2 if (r < d), 3 if (r = d > 2), 4 if (r = d = 2).</td>
</tr>
<tr>
<td>3</td>
<td>((F_{pe})^r)</td>
<td>3 if (e = d = 3), 2 otherwise</td>
</tr>
<tr>
<td>4</td>
<td>(U \times W)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>(V \oplus \cdots \oplus V_r)</td>
<td>2 if (r \neq 2), 3 if (r = 2).</td>
</tr>
<tr>
<td>8</td>
<td>((V, \beta))</td>
<td>2 if (\beta) alt., 3 if (\beta) symm.</td>
</tr>
<tr>
<td>(Alt(m))</td>
<td>"Fully Deleted"</td>
<td>3</td>
</tr>
</tbody>
</table>
Thank you!