Contraction groups in locally compact groups

Colin D. Reid

University of Newcastle, Australia

ANZMC, Melbourne December 2014
A **topological group** is a group that is also a topological space, such that \((x, y) \mapsto xy\) and \(x \mapsto x^{-1}\) are continuous.

A topological group \(G\) has a largest connected subgroup \(G_0\). The component group \(G/G_0\) is **totally disconnected**.

\(G\) is **locally compact** if there is a compact neighbourhood of 1.

Theorem (van Dantzig)

Let \(G\) be a totally disconnected, locally compact group. Then the compact open subgroups of \(G\) form a base of neighbourhoods of the identity.
A **topological group** is a group that is also a topological space, such that \((x, y) \mapsto xy\) and \(x \mapsto x^{-1}\) are continuous.

A topological group \(G\) has a largest connected subgroup \(G_0\). The component group \(G/G_0\) is **totally disconnected**.

\(G\) is **locally compact** if there is a compact neighbourhood of 1.

Theorem (van Dantzig)

Let \(G\) be a totally disconnected, locally compact group. Then the compact open subgroups of \(G\) form a base of neighbourhoods of the identity.
A topological group is a group that is also a topological space, such that \((x, y) \mapsto xy\) and \(x \mapsto x^{-1}\) are continuous.

A topological group \(G\) has a largest connected subgroup \(G_0\). The component group \(G/G_0\) is totally disconnected.

\(G\) is locally compact if there is a compact neighbourhood of 1.

Theorem (van Dantzig)
Let \(G\) be a totally disconnected, locally compact group. Then the compact open subgroups of \(G\) form a base of neighbourhoods of the identity.
A **topological group** is a group that is also a topological space, such that \((x, y) \mapsto xy\) and \(x \mapsto x^{-1}\) are continuous.

A topological group \(G\) has a largest connected subgroup \(G_0\). The component group \(G/G_0\) is **totally disconnected**.

\(G\) is **locally compact** if there is a compact neighbourhood of 1.

Theorem (van Dantzig)

Let \(G\) be a totally disconnected, locally compact group. Then the compact open subgroups of \(G\) form a base of neighbourhoods of the identity.
Let G be a topological group and let α be an endomorphism of G. Define the **contraction group**:

$$\text{con}(\alpha) := \{ g \in G \mid \alpha^n(g) \to 1 \text{ as } n \to +\infty \}$$

For $g \in G$ we define $\text{con}(g) := \text{con}(\alpha)$ where $\alpha : x \mapsto gxg^{-1}$.

Examples

- Let $G = \mathbb{C}^n$ and let α be a diagonalisable matrix. Then $\text{con}(\alpha)$ is the direct sum of all eigenspaces with eigenvalue $|\lambda| < 1$.

- Let $G = \text{Sym}(\mathbb{Z})$ (equipped with the pointwise convergence topology), and let g be the permutation $x \mapsto x + 1$. Then $\text{con}(g)$ consists of all permutations h of \mathbb{Z} such that $h(y) = y$ for all $y \ll 0$.
Let G be a topological group and let α be an endomorphism of G. Define the **contraction group**:

$$\text{con}(\alpha) := \{ g \in G \mid \alpha^n(g) \to 1 \text{ as } n \to +\infty \}$$

For $g \in G$ we define $\text{con}(g) := \text{con}(\alpha)$ where $\alpha : x \mapsto gxg^{-1}$.

Examples

- Let $G = \mathbb{C}^n$ and let α be a diagonalisable matrix. Then $\text{con}(\alpha)$ is the direct sum of all eigenspaces with eigenvalue $|\lambda| < 1$.

- Let $G = \text{Sym}(\mathbb{Z})$ (equipped with the pointwise convergence topology), and let g be the permutation $x \mapsto x + 1$. Then $\text{con}(g)$ consists of all permutations h of \mathbb{Z} such that $h(y) = y$ for all $y \ll 0$.
Let G be a topological group and let α be an endomorphism of G. Define the **contraction group**:

$$\text{con}(\alpha) := \{g \in G \mid \alpha^n(g) \to 1 \text{ as } n \to +\infty\}$$

For $g \in G$ we define $\text{con}(g) := \text{con}(\alpha)$ where $\alpha : x \mapsto gxg^{-1}$.

Examples

- Let $G = \mathbb{C}^n$ and let α be a diagonalisable matrix. Then $\text{con}(\alpha)$ is the direct sum of all eigenspaces with eigenvalue $|\lambda| < 1$.

- Let $G = \text{Sym}(\mathbb{Z})$ (equipped with the pointwise convergence topology), and let g be the permutation $x \mapsto x + 1$. Then $\text{con}(g)$ consists of all permutations h of \mathbb{Z} such that $h(y) = y$ for all $y \ll 0$.

Colin Reid

University of Newcastle, Australia

Contraction groups in locally compact groups
The contraction group is very important for understanding the dynamics of an automorphism.

Proposition

Let G be a totally disconnected, locally compact group and let α be an automorphism of G. Then the following are equivalent:

(i) $\text{con}(\alpha) = \text{con}(\alpha^{-1}) = 1$;

(ii) Every neighbourhood of the identity in G contains an α-invariant neighbourhood;

(iii) Every neighbourhood of the identity in G contains an α-invariant compact open subgroup.
The contraction group is very important for understanding the dynamics of an automorphism.

Proposition

Let G be a totally disconnected, locally compact group and let α be an automorphism of G. Then the following are equivalent:

(i) $\text{con}(\alpha) = \text{con}(\alpha^{-1}) = 1$;

(ii) Every neighbourhood of the identity in G contains an α-invariant neighbourhood;

(iii) Every neighbourhood of the identity in G contains an α-invariant compact open subgroup.
In a connected locally compact group G, the contraction group of $g \in G$ is sensitive to perturbations of g; that is, given a sequence $g_n \to g$, there is no reason for $\text{con}(g)$ to be approximated by $\text{con}(g_n)$.

Example

Let $G = \text{SL}_2(\mathbb{R})$ and let $g_\lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$. Then $\text{con}(g_\lambda) = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \}$ for all $0 < \lambda < 1$, but $\text{con}(g_1)$ is trivial.
In a connected locally compact group G, the contraction group of $g \in G$ is sensitive to perturbations of g; that is, given a sequence $g_n \to g$, there is no reason for $\text{con}(g)$ to be approximated by $\text{con}(g_n)$.

Example

Let $G = \text{SL}_2(\mathbb{R})$ and let $g_\lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$. Then $\text{con}(g_\lambda) = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} | a \in \mathbb{R} \}$ for all $0 < \lambda < 1$, but $\text{con}(g_1)$ is trivial.
However, the situation is different for totally disconnected, locally compact (t.d.l.c.) groups.

Let G be a t.d.l.c. group, let $g \in G$ and let U be a compact open subgroup of G. Then U is **tidy above** for g if $U = U_+ U_-$ for some subgroups U_+ and U_- such that $U_+ \leq gU_+ g^{-1}$ and $U_- \geq gU_- g^{-1}$.

Proposition (Willis)

Let G be a t.d.l.c. group and let $g \in G$. Then every neighbourhood of the identity in G contains a compact open subgroup U that is tidy above for g.
However, the situation is different for totally disconnected, locally compact (t.d.l.c.) groups.

Let G be a t.d.l.c. group, let $g \in G$ and let U be a compact open subgroup of G. Then U is **tidy above** for g if $U = U_+ U_-$ for some subgroups U_+ and U_- such that $U_+ \leq gU_+g^{-1}$ and $U_- \geq gU_-g^{-1}$.

Proposition (Willis)

Let G be a t.d.l.c. group and let $g \in G$. Then every neighbourhood of the identity in G contains a compact open subgroup U that is tidy above for g.
However, the situation is different for totally disconnected, locally compact (t.d.l.c.) groups.

Let G be a t.d.l.c. group, let $g \in G$ and let U be a compact open subgroup of G. Then U is **tidy above** for g if $U = U_+ U_-$ for some subgroups U_+ and U_- such that $U_+ \leq gU_+ g^{-1}$ and $U_- \geq gU_- g^{-1}$.

Proposition (Willis)

Let G be a t.d.l.c. group and let $g \in G$. Then every neighbourhood of the identity in G contains a compact open subgroup U that is tidy above for g.
Theorem 1 (Caprace–R–Willis)
Let G be a t.d.l.c. group and let $g \in G$. Let U be an open compact subgroup of G that is tidy above for g, and let $u \in U$. Then there exists $t \in U \cap \text{con}(g^{-1})$ such that

$$\text{con}(gu) = t\text{con}(g)t^{-1}.$$

Corollary
Let G be a t.d.l.c. group and $S(G)$ be the space of closed subgroups of G (equipped with the Chabauty topology). Then the function

$$G \to S(G); \quad g \mapsto \overline{\text{con}(g)}$$

is continuous.
Theorem 1 (Caprace–R–Willis)
Let G be a t.d.l.c. group and let $g \in G$. Let U be an open compact subgroup of G that is tidy above for g, and let $u \in U$. Then there exists $t \in U \cap \text{con}(g^{-1})$ such that

$$\text{con}(gu) = t\text{con}(g)t^{-1}.$$

Corollary
Let G be a t.d.l.c. group and $S(G)$ be the space of closed subgroups of G (equipped with the Chabauty topology). Then the function

$$G \to S(G); \quad g \mapsto \overline{\text{con}(g)}$$

is continuous.
An important complication in topological group theory is that interesting kinds of subgroups are not necessarily closed. For example, the contraction group of an element is not closed in general, and a topological group can be topologically simple (that is, there is no proper non-trivial closed normal subgroup) without being simple as an abstract group. However, sometimes we can control non-closed subgroups using topological methods.

Theorem 2 (Caprace–R–Willis)

Let G be a t.d.l.c. group, let A be a subgroup of G (not necessarily closed), and let $g \in A$. Then.

$$\text{con}(g) \leq A \iff \text{con}(g) \leq N_G(A).$$
An important complication in topological group theory is that interesting kinds of subgroups are not necessarily closed. For example, the contraction group of an element is not closed in general, and a topological group can be topologically simple (that is, there is no proper non-trivial closed normal subgroup) without being simple as an abstract group. However, sometimes we can control non-closed subgroups using topological methods.

Theorem 2 (Caprace–R–Willis)

Let G be a t.d.l.c. group, let A be a subgroup of G (not necessarily closed), and let $g \in A$. Then,

$$\text{con}(g) \leq A \iff \text{con}(g) \leq N_G(A).$$
An important complication in topological group theory is that interesting kinds of subgroups are not necessarily closed. For example, the contraction group of an element is not closed in general, and a topological group can be topologically simple (that is, there is no proper non-trivial closed normal subgroup) without being simple as an abstract group. However, sometimes we can control non-closed subgroups using topological methods.

Theorem 2 (Caprace–R–Willis)

Let G be a t.d.l.c. group, let A be a subgroup of G (not necessarily closed), and let $g \in A$. Then.

$$\overline{\text{con}(g)} \leq A \iff \overline{\text{con}(g)} \leq N_G(A).$$
We define the **Tits core** of a t.d.l.c. group G to be the group

$$G^\dagger = \langle \text{con}(g) \mid g \in G \rangle.$$

Theorem 3 (Caprace–R–Willis)

Let G be a t.d.l.c. group. Let A be a dense subgroup of G. Then $G^\dagger \leq A$ if and only if G^\dagger normalises A. Consequently, every dense subnormal subgroup of G contains G^\dagger.

Corollary

Let G be a topologically simple t.d.l.c. group. Suppose G^\dagger is non-trivial. Then G^\dagger is simple as an abstract group.
We define the **Tits core** of a t.d.l.c. group G to be the group

$$G^\dagger = \langle \text{con}(g) \mid g \in G \rangle.$$

Theorem 3 (Caprace–R–Willis)

Let G be a t.d.l.c. group. Let A be a dense subgroup of G. Then $G^\dagger \leq A$ if and only if G^\dagger normalises A. Consequently, every dense subnormal subgroup of G contains G^\dagger.

Corollary

Let G be a topologically simple t.d.l.c. group. Suppose G^\dagger is non-trivial. Then G^\dagger is simple as an abstract group.
We define the **Tits core** of a t.d.l.c. group G to be the group

$$G^\dagger = \langle \text{con}(g) \mid g \in G \rangle.$$

Theorem 3 (Caprace–R–Willis)

Let G be a t.d.l.c. group. Let A be a dense subgroup of G. Then $G^\dagger \leq A$ if and only if G^\dagger normalises A. Consequently, every dense subnormal subgroup of G contains G^\dagger.

Corollary

Let G be a topologically simple t.d.l.c. group. Suppose G^\dagger is non-trivial. Then G^\dagger is simple as an abstract group.
We define the **Tits core** of a t.d.l.c. group \(G \) to be the group

\[
G^\dagger = \langle \text{con}(g) \mid g \in G \rangle.
\]

Theorem 3 (Caprace–R–Willis)

Let \(G \) be a t.d.l.c. group. Let \(A \) be a dense subgroup of \(G \). Then \(G^\dagger \leq A \) if and only if \(G^\dagger \) normalises \(A \). Consequently, every dense subnormal subgroup of \(G \) contains \(G^\dagger \).

Corollary

Let \(G \) be a topologically simple t.d.l.c. group. Suppose \(G^\dagger \) is non-trivial. Then \(G^\dagger \) is simple as an abstract group.
Question

Let G be a t.d.l.c. group. Suppose that G is generated by a compact subset, and G has no non-trivial discrete quotient. Is G^\dagger necessarily dense in G?

By a result of Caprace–Monod, the problem reduces to the case when G is topologically simple.

By results of Caprace–R.–Willis, if G is topologically simple, we can additionally assume the following condition:

(*) Given a non-trivial subgroup K of G such that $N_G(K)$ is open, then $C_G(K) = 1$.

(‘Most’ known examples of compactly generated simple t.d.l.c. groups do not satisfy (*).)
Question
Let G be a t.d.l.c. group. Suppose that G is generated by a compact subset, and G has no non-trivial discrete quotient. Is G^\dagger necessarily dense in G?

By a result of Caprace–Monod, the problem reduces to the case when G is topologically simple.

By results of Caprace–R.–Willis, if G is topologically simple, we can additionally assume the following condition:

(*) Given a non-trivial subgroup K of G such that $N_G(K)$ is open, then $C_G(K) = 1$.

(‘Most’ known examples of compactly generated simple t.d.l.c. groups do not satisfy (*).)
Question
Let G be a t.d.l.c. group. Suppose that G is generated by a compact subset, and G has no non-trivial discrete quotient. Is G^\dagger necessarily dense in G?

By a result of Caprace–Monod, the problem reduces to the case when G is topologically simple.

By results of Caprace–R.–Willis, if G is topologically simple, we can additionally assume the following condition:

(*) Given a non-trivial subgroup K of G such that $N_G(K)$ is open, then $C_G(K) = 1$.

(‘Most’ known examples of compactly generated simple t.d.l.c. groups do not satisfy (*)&.)

