Locally triangular graphs
and rectagraphs with symmetry

Joanna B. Fawcett
The University of Western Australia

11 December, 2014

Joint work with John Bamberg, Alice Devillers, and Cheryl Praeger
A graph Γ is \textit{locally} Δ for some graph Δ if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to Δ.
A graph Γ is \textit{locally} Δ for some graph Δ if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to Δ.
A graph Γ is \textit{locally} Δ for some graph Δ if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to Δ.

\begin{center}
\begin{tikzpicture}

\node (u) at (0,0) [label=above:u] {};

\node (v1) at (1,1.732) {};
\node (v2) at (1,0) {};
\node (v3) at (0,1.732) {};
\node (v4) at (-1,0) {};
\node (v5) at (-1,1.732) {}

\draw[thick] (u) -- (v1) -- (v2) -- (v3) -- (v4) -- (v5) -- (u);
\draw[thick,blue] (v1) -- (v2) -- (v3) -- (v4) -- (v5)
\end{tikzpicture}
\end{center}
A graph Γ is \textbf{locally} Δ for some graph Δ if for every vertex $u \in V\Gamma$, the graph induced by the neighbourhood $\Gamma(u)$ is isomorphic to Δ.
A graph Γ is **locally 2-arc transitive** if there exists $G \leq \text{Aut}(\Gamma)$ such that, for every $u \in V\Gamma$, the stabiliser G_u acts transitively on the 2-arcs starting at u:

![Triangle 2-geodesic](image)
A graph Γ is **locally 2-arc transitive** if there exists $G \leq \text{Aut}(\Gamma)$ such that, for every $u \in V\Gamma$, the stabiliser G_u acts transitively on the 2-arcs starting at u:

![Diagram showing a triangle and a 2-geodesic graph representing locally 2-arc transitive graphs.](image-url)
A graph Γ is **locally 2-arc transitive** if there exists $G \leq \text{Aut}(\Gamma)$ such that, for every $u \in V\Gamma$, the stabiliser G_u acts transitively on the 2-arcs starting at u:

![Diagram of a triangle and a 2-geodesic]

If Γ is a connected non-complete graph with girth 3, then Γ is **never** locally 2-arc transitive.
Suppose that for each $u \in V\Gamma$, there are two orbits of $\text{Aut}(\Gamma)_u$ on the 2-arcs starting at u, namely the triangles and the 2-geodesics.
Suppose that for each \(u \in V \Gamma \), there are two orbits of \(\text{Aut}(\Gamma)_u \) on the 2-arcs starting at \(u \), namely the triangles and the 2-geodesics.
Suppose that for each $u \in V\Gamma$, there are two orbits of $\text{Aut}(\Gamma)_u$ on the 2-arcs starting at u, namely the triangles and the 2-geodesics.

Thus the permutation group $\text{Aut}(\Gamma)^{\Gamma(u)}_u$ induced by $\text{Aut}(\Gamma)_u$ on $\Gamma(u)$ is transitive of rank 3 for all $u \in V\Gamma$.
Suppose that for each \(u \in V\Gamma \), there are two orbits of \(\text{Aut}(\Gamma)_u \) on the 2-arcs starting at \(u \), namely the triangles and the 2-geodesics.

Thus the permutation group \(\text{Aut}(\Gamma)^{\Gamma(u)}_u \) induced by \(\text{Aut}(\Gamma)_u \) on \(\Gamma(u) \) is transitive of rank 3 for all \(u \in V\Gamma \).

In fact, the converse holds for all connected non-complete graphs with girth 3.
This observation motivates the following definition:
This observation motivates the following definition:

A graph Γ is **locally rank 3 with respect to** G if the following hold:

(i) Γ has no vertices with valency 0,
(ii) $G \leq \text{Aut}(\Gamma)$,
(iii) For all $u \in V\Gamma$, the group $G_{\Gamma}^{(u)}$ is transitive of rank 3.

We also say that Γ is locally rank 3 if it is locally rank 3 with respect to some G.
This observation motivates the following definition:

A graph Γ is **locally rank 3 with respect to G** if the following hold:

(i) Γ has no vertices with valency 0,
(ii) $G \leq \text{Aut}(\Gamma)$,
(iii) For all $u \in V\Gamma$, the group $G_u^{\Gamma(u)}$ is transitive of rank 3.

We also say that Γ is **locally rank 3** if it is locally rank 3 with respect to some G.
Some very nice graphs with rank 3 groups of automorphisms:
Some very nice graphs with rank 3 groups of automorphisms:

- The **triangular graph** T_n for $n \geq 3$:
 - Vertex set: $\binom{n}{2} := \{\{i, j\} : 1 \leq i < j \leq n\}$.
 - Adjacency: $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.
Some very nice graphs with rank 3 groups of automorphisms:

- The **triangular graph** T_n for $n \geq 3$:

 Vertex set: $\binom{n}{2} := \{\{i, j\} : 1 \leq i < j \leq n\}$.

 Adjacency: $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

- The complement \overline{T}_n of T_n for $n \geq 3$.
Some very nice graphs with rank 3 groups of automorphisms:

- The triangular graph T_n for $n \geq 3$:
 - Vertex set: $\binom{n}{2} := \{\{i, j\} : 1 \leq i < j \leq n\}$.
 - Adjacency: $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

- The complement \overline{T}_n of T_n for $n \geq 3$.

![Diagram](image-url)
e.g. Petersen Graph \overline{T}_5
Some very nice graphs with rank 3 groups of automorphisms:

- The triangular graph T_n for $n \geq 3$:

 Vertex set: $\binom{n}{2} := \{\{i, j\} : 1 \leq i < j \leq n\}$.

 Adjacency: $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.

- The complement \overline{T}_n of T_n for $n \geq 3$.

Aut(T_n) = Aut(\overline{T}_n) is S_n for $n \neq 4$ and $S_4 \times C_2$ for $n = 4$.

e.g. Petersen Graph \overline{T}_5
Some very nice graphs with rank 3 groups of automorphisms:

- The **triangular graph** T_n for $n \geq 3$:
 - Vertex set: $\binom{n}{2} := \{\{i, j\} : 1 \leq i < j \leq n\}$.
 - Adjacency: $\{i, j\} \sim \{k, \ell\} \iff |\{i, j\} \cap \{k, \ell\}| = 1$.
- The complement \overline{T}_n of T_n for $n \geq 3$.

The complement \overline{T}_5 of T_5 is an example of a Petersen Graph.

$\text{Aut}(T_n) = \text{Aut}(\overline{T}_n)$ is S_n for $n \neq 4$ and $S_4 \times C_2$ for $n = 4$.
Connected locally \overline{T}_n graphs (for $n \geq 5$) were classified by Hall and Shult (1985). They are:
Connected locally \overline{T}_n graphs (for $n \geq 5$) were classified by Hall and Shult (1985). They are:

- \overline{T}_{n+2} for $n \geq 5$.
Connected locally \overline{T}_n graphs (for $n \geq 5$) were classified by Hall and Shult (1985). They are:

- \overline{T}_{n+2} for $n \geq 5$.
- Two other known graphs for $n = 5$.
- Two other known graphs for $n = 6$.
Connected locally \overline{T}_n graphs (for $n \geq 5$) were classified by Hall and Shult (1985). They are:

- \overline{T}_{n+2} for $n \geq 5$.
- Two other known graphs for $n = 5$.
- Two other known graphs for $n = 6$.

All of these graphs are locally rank 3.
What about connected locally T_n graphs?
What about connected locally T_n graphs?

- Halved n-cube for $n \geq 3$.
What about connected locally T_n graphs?

- Halved n-cube for $n \geq 3$.
- Halved folded n-cube for n even and $n \geq 8$.
What about connected locally T_n graphs?

- Halved n-cube for $n \geq 3$.
- Halved folded n-cube for n even and $n \geq 8$.
- Strongly regular locally T_n graphs classified by Makhnev (2001)
What about connected locally T_n graphs?

- Halved n-cube for $n \geq 3$.
- Halved folded n-cube for n even and $n \geq 8$.
- Strongly regular locally T_n graphs classified by Makhnev (2001)
- Certain distance-regular locally T_n graphs classified by Jurišić and Koolen (2003)
What about connected locally T_n graphs?

- Halved n-cube for $n \geq 3$.
- Halved folded n-cube for n even and $n \geq 8$.
- Strongly regular locally T_n graphs classified by Makhnev (2001)
- Certain distance-regular locally T_n graphs classified by Jurišić and Koolen (2003)

All of these graphs are locally rank 3.
A connected graph Γ is locally rank 3 and locally T_n if and only if Γ is the halved graph of one of the following graphs.

(i) The n-cube Q_n where $n \geq 3$.
(ii) The folded n-cube \Box_n where n is even and $n \geq 8$.
(iii) The bipartite double of the coset graph of the binary Golay code C_{23}.
(iv) The coset graph of the extended binary Golay code C_{24}.
A **rectagraph** is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.
A **rectagraph** is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

Lemma (Neumaier, 1985)

A connected graph Γ is locally T_n if and only if Γ is a halved graph of a bipartite rectagraph of valency n with $c_3 = 3$.
A rectagraph is a connected triangle-free graph in which any 2-arc lies in a unique quadrangle.

Lemma (Neumaier, 1985)

A connected graph \(\Gamma \) is locally \(T_n \) if and only if \(\Gamma \) is a halved graph of a bipartite rectagraph of valency \(n \) with \(c_3 = 3 \).

Let \(G \) be a group acting on a set \(\Omega \) with \(|\Omega| \geq 4 \). We say that \(G \) is 4-homogeneous if \(G \) is transitive on the set of 4-subsets of \(\Omega \).
Theorem (Bamberg-Devillers-F.-Praeger, 2014)

Let Π be a rectagraph with $c_3 = 3$ and no 5-cycles. There exists $u \in V\Pi$ such that $|\Pi(u)| \geq 4$ and $\text{Aut}(\Pi)u$ is 4-homogeneous on $\Pi(u)$ if and only if Π is one of the following.

(i) The n-cube Q_n where $n \geq 4$.

(ii) The folded n-cube \Box_n where $n \geq 7$.

(iii) The bipartite double of the coset graph of the binary Golay code.

(iv) The coset graph of the binary Golay code C_{23}.

(v) The coset graph of the extended binary Golay code C_{24}.
Let Δ and Π be graphs. A surjective map $\pi : \Delta \rightarrow \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(x\pi)$ for all $x \in V\Delta$.

Lemma Let Π be a rectagraph of valency n with $c_3 = 3$ and no 5-cycles.

(i) For any $u \in V\Pi$, there exists a covering $\pi : Q_n \rightarrow \Pi$ such that $0\pi = u$ (Brouwer-Cohen-Neumaier, 1989).

(ii) Π is a normal quotient of Q_n by $K = \{g \in \text{Aut}(Q_n) : g \circ \pi = \pi\}$ (Matsumoto, 1991).
Let Δ and Π be graphs. A surjective map $\pi : \Delta \rightarrow \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(x\pi)$ for all $x \in V\Delta$.

\[\forall u, v \in V\Pi \]

\[u\pi^{-1} \]

\[v\pi^{-1} \]
Let Δ and Π be graphs. A surjective map $\pi : \Delta \to \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(x\pi)$ for all $x \in V\Delta$.

Lemma

Let Π be a rectagraph of valency n with $c_3 = 3$ and no 5-cycles.
Let Δ and Π be graphs. A surjective map $\pi : \Delta \to \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(x\pi)$ for all $x \in V\Delta$.

Lemma

Let Π be a rectagraph of valency n with $c_3 = 3$ and no 5-cycles.

(i) For any $u \in V\Pi$, there exists a covering $\pi : Q_n \to \Pi$ such that $0\pi = u$ (Brouwer-Cohen-Neumaier, 1989).
Let Δ and Π be graphs. A surjective map $\pi : \Delta \to \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(\pi(x))$ for all $x \in V\Delta$.

\[\forall u, v \in V\Pi \]

Lemma

Let Π be a rectagraph of valency n with $c_3 = 3$ and no 5-cycles.

(i) For any $u \in V\Pi$, there exists a covering $\pi : Q_n \to \Pi$ such that $0\pi = u$ (Brouwer-Cohen-Neumaier, 1989).

\[K = \{ g \in \text{Aut}(Q_n) : g \circ \pi = \pi \} \]
Let Δ and Π be graphs. A surjective map $\pi : \Delta \to \Pi$ is a covering if π induces a bijection from $\Delta(x)$ onto $\Pi(x\pi)$ for all $x \in \mathcal{V}\Delta$.

Lemma

Let Π be a rectagraph of valency n with $c_3 = 3$ and no 5-cycles.

(i) For any $u \in \mathcal{V}\Pi$, there exists a covering $\pi : Q_n \to \Pi$ such that $0_{Q_n} = u$ (Brouwer-Cohen-Neumaier, 1989).

(ii) Π is a normal quotient of Q_n by $K = \{g \in \text{Aut}(Q_n) : g \circ \pi = \pi\}$ (Matsumoto, 1991).
What next?

Consider locally Grassmann graphs:

Vertex set: The 2-subspaces of an F^q-vector space.

Adjacency: Two 2-subspaces are adjacent whenever their intersection has dimension one.

Examples of locally Grassmann graphs include:

The graph of alternating forms over F^2.

The graph of quadratic forms over F^2.

(Munemasa-Pasechnik-Shpectorov, 1993)

By Kabanov-Makhnev-Paduchikh (2007), we must have $q = 2^n$.

What next?

Consider locally Grassmann graphs:

Vertex set: The 2-subspaces of an \mathbb{F}_q-vector space.

Adjacency: Two 2-subspaces are adjacent whenever their intersection has dimension one.

Examples of locally Grassmann graphs include:

- The graph of alternating forms over \mathbb{F}_2.
- The graph of quadratic forms over \mathbb{F}_2.

(Munemasa-Pasechnik-Shpectorov, 1993)

By Kabanov-Makhnev-Paduchikh (2007), we must have $q = 2$.
What next?

Consider locally Grassmann graphs:

- **Vertex set:** The 2-subspaces of an \mathbb{F}_q-vector space.
- **Adjacency:** Two 2-subspaces are adjacent whenever their intersection has dimension one.

Examples of locally Grassmann graphs include:

- The graph of alternating forms over \mathbb{F}_2.
- The graph of quadratic forms over \mathbb{F}_2.
 (Munemasa-Pasechnik-Shpectorov, 1993)
What next?

Consider locally Grassmann graphs:

Vertex set: The 2-subspaces of an \mathbb{F}_q-vector space.

Adjacency: Two 2-subspaces are adjacent whenever their intersection has dimension one.

Examples of locally Grassmann graphs include:

- The graph of alternating forms over \mathbb{F}_2.
- The graph of quadratic forms over \mathbb{F}_2.

(Munemasa-Pasechnik-Shpectorov, 1993)

By Kabanov-Makhnev-Paduchikh (2007), we must have $q = 2$!
A graph Γ is locally rank 3 with respect to $G \leq \text{Aut}(\Gamma)$ if and only if G is listed here:

<table>
<thead>
<tr>
<th>Γ</th>
<th>n</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}Q_n$</td>
<td>$n \geq 5$</td>
<td>$2^{n-1} \rtimes S_n$, $2^{n-1} \rtimes A_n$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A_4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>$2^4 \rtimes S_4$, $2^3 \rtimes S_4$, $(2^3 \rtimes A_4).2$</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>$2^8 \rtimes \text{PGL}_2(8)$</td>
</tr>
<tr>
<td></td>
<td>11, 12, 23, 24</td>
<td>$2^{n-1} \rtimes M_n$</td>
</tr>
<tr>
<td>$\frac{1}{2}\square_n$</td>
<td>$n \geq 8$ even</td>
<td>$2^{n-2} \rtimes S_n$, $2^{n-2} \rtimes A_n$</td>
</tr>
<tr>
<td></td>
<td>12, 24</td>
<td>$2^{n-2} \rtimes M_n$</td>
</tr>
<tr>
<td>$\frac{1}{2}\Gamma(C_{23}).2$</td>
<td>23</td>
<td>$2^{11} \rtimes M_{23}$</td>
</tr>
<tr>
<td>$\frac{1}{2}\Gamma(C_{24})$</td>
<td>24</td>
<td>$2^{11} \rtimes M_{24}$</td>
</tr>
</tbody>
</table>